CHEMICAL STUDIES ON ACTINOMYCIN S. II

CHEMICAL STRUCTURES OF ACTINOMYCIN S₂ AND S₃

Minoru Furukawa, Atsuo Inoue and Kazuo Asano

Fermentation Research Laboratory, Daiichi Seiyaku Co., Ltd., Takatsuki, Osaka

Junichi Kawamata
Research Institute for Microbial Diseases,
Osaka University, Osaka

(Received for publication July 26, 1968)

A previous paper1) reported the separation of actinomycin S, which is produced by a streptomyces strain 1048 A, taxonomically related to Streptomyces flaveolus. Actinomycin S was separated into two major components, S2 and S3, and two minor components, So and Si by column chromatography on alumina and silicic acid. present paper deals with the identification of the S2- and S3-components of actinomycin S. The So- and So-components were separated from components S2+8 by column chromatography on acidic alumina (Nakarai Chemicals Ltd.). Components S₂ and S₃ were separated from each other as follows: The mixture was dissolved in very small amount of benzene and applied to a column of alumina equilibrated with benzene. The

Fig. 1. Infrared absorption spectra of actinomycin $S_2, \\ S_3$ and D (KBr)

- 1: Actinomycin S₃
- Actinomycin S₂
- 3: Actinomycin D

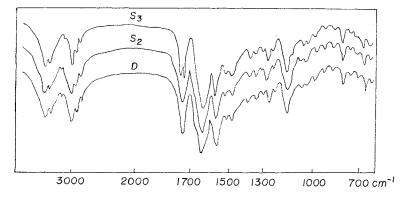


Table 1. R_D^* values of circular paper chromatography of actinomycin S_2 , S_3 and D

Solvent system	Actinomycin							
		Found	Reported ⁵⁾					
	D	S_2	S ₃	$X_2(A_V \text{ or } B_V)$				
1	standard 1.00	1.00	1.59	_				
2	standard 1.00	1.00	1.83	1.80				
2	standard 1.00	1.00	1.23	_				

Solvent system:

- 1: Isoamyl acetate: 5 % sodium naphthalene sulfonate (1:1)
- Dibutyl ether: ethyl acetate: 2 % β-naphthalene sulfonic acid (3:1:4)
- 3: Ethyl acetate: 2 % β -naphthalene sulfonic acid: dibutyl ether (2:1:1)
- * R_D =Rf of unknown/Rf of actinomycin D Paper: Toyo Roshi No. 50

column was developed with ethyl acetate. The two clearly separated bands thus obtained were eluted with ethyl acetate and evaporated to dryness in vacuo. Actinomycin S_2 was recrystallized from a mixture of ethanol and methanol(3:1), and S_3 from ethyl acetate.

Purified samples of actinomycin S₂ and S₃ were subjected to circular paper chromatography by the method of Vining²⁾. As shown in Table 1, actinomycin S₂ had an R_D value similar to actinomycin D, which was kindly supplied by Merck, Sharp and Dohme Research Laboratories. The R_D value of actinomycin S₃ was quite different

from that of actinomycin D and corresponded to that of actinomycin X_2 (A_v or B_v) reported by $V_{\text{INING}^2,3}$.

Various physical and chemical properties of actinomycin S₂ and S₃ are shown in Table 2. The ultraviolet absorption spectra of the two compounds are quite similar. The infrared absorption spectra of actinomycin S₂ and S₃ shown in Fig. 1, differed only in the region of

		Actinomycin							
Property				Reported					
		S_2	S_3	D (C ₁ , D _{IV}) ⁴⁾	X_{2}^{5} (A_{V}, B_{V})				
Crystalline form and Color		prism red	-		fine needle red				
Melting point (decomposition)		242 ~ 243℃	245∼246°C	241°C (235.5~236.5)	244~246°C				
Specific rotation		-289 ± 10 (CHCl ₃)	$\begin{array}{c} -320\pm10 \\ (\mathrm{CHCl_8}) \end{array}$	-262 (CHCl ₃)	$-341\pm10\ (\text{CH}_{3}\text{OH})$				
Absorption maximum in mμ		$445\sim446$ $240\sim242$	445~446 240	445 240	446				
$\log \varepsilon = 445 \text{ m}\mu $ $240 \text{ m}\mu$		4. 44 4. 53	4. 41 4. 51	4. 43 4. 49	4.4				
Molecular formula				$C_{62}H_{86}N_{12}O_{16}$	$C_{62}H_{84}N_{12}O_{17}$				
Elemental analysis		Found	Found	Calculated	Calculated				
	С	59. 20	57, 20	59.33	58.68				
	н	6.90	6.65	6.86	6.62				
	N	13. 47	13. 21	13. 40	13. 25				

Table 2. Physical and chemical properties of actinomycin S2 and S3

the carbonyl band, and no differences were detected between the spectra of actinomycin S_2 and D.

Amino acid analyses of acid hydrolyzates of actinomycin S2, S3 and of their products of oxidation with hydrogen peroxide4) were performed in an amino acid autoanalyzer (Hitachi KLA-III model). N-Methylvaline was determined by the conventional method of paper chromatography⁶⁾. An amino acid was isolated from the acid hydrolyzates of actinomycin S₃ by column chromatography on ion exchange resin (Dowex 50×8). This was shown by elementary analysis and comparison of its infrared absorption spectrum with that of authentic material identical with 7-oxoproline, which was described by Kuhn and Osswald?).

The presence of γ -oxoproline in actinomycin X_2 was suggested by Brockmann and $G_{R\ddot{o}NE^5}$. As shown in Table 3, actinomycin S_2 contained two molecules of proline,

Table 3. Amino acid analyses of acid hydrolyzates of actinomycin S_2 , S_3 and oxidation products

II-du-l	Amino acid							
Hydrolyzate	Asp*	Oxopro	Thr**	Pro	Val	Sar	N-Meval	
Actinomycin S ₂			1.10	1.98	2.00	2.11	2.01	
Actinomycin S ₃	1	0.97	1.21	0.99	2.04	1.99	2.05	
Actinomycin S ₂ peptide A***			0.88	1.00	1.00	1.04	0.99	
Actinomycin S ₂ peptide B***			0.72	0.98	1.00	1.01	1.02	
Actinomycin S ₃ peptide A	0.04		0.89	0.92	1.00	0.98	1.01	
Actinomycin S ₃ peptide B	0.62		0.93	0.09	1.00	1.00	1.02	

Asp: aspartic acid Oxopro: γ -oxoproline Thr: threonine

Pro: proline Val: valine Sar: sarcosine

N-Meval: N-methylvaline

The values are expressed as moles of amino acid per mole of actinomycin S_2 and S_3 or of valine.

- * Aspartic acid is considered to be the oxidation product of γ-oxoproline formed during the vigorous degradation process with hydrogen peroxide.
- ** Threonine is known to be partly destroyed under conditions of vigorous acid hydrolysis.
- *** These peptides are oxidation products by a method similar to that of Bullock and Johnson⁴.

Peptide A is soluble in organic solvents, and peptide B is soluble in water.

and actinomycin S₃ contained one molecule of proline and one molecule of γ -oxoproline.

Although the chromophores of all members of the actinomycin group are thought to be identical⁸⁾, the chromophore of actino-

mycin S_3 was isolated by treatment of the specimen with barium hydroxide^{4,9,10)} to obtain actinomycinol. The elemental analysis and ultraviolet and infrared absorption spectra of the isolated actinomycinol were the same as the values described in the literatures^{4,9,10}.

Although the final elucidation of the structure of actinomycin S_2 must await further investigation, it seems to be identical with actinomycin D. Furthermore the antibacterial and antitumor activities of actinomycin S_2 are identical with those of actinomycin D (unpublished). The chromatographic pattern of actinomycin S_3 and the presence in it of γ -oxoproline suggest that it is similar to actinomycin X_2 . A similar result was obtained by Kuryzowicz by comparison with an authentic specimen by paper chromatography (personal communication).

References

- KAWAMATA, J. & H. FUJITA: Chemical studies of actinomycin S. I. Amino acid content. J. Antibiotics, Ser. A 13: 295~297, 1960
- Vining, L. C. & S. A. Waksman: Paper chromatographic identification of the actinomycins. Science 120: 389~390, 1954
- Roussos, G. G. & L. C. Vining: Isolation and properties of pure actinomycins. J. Chem. Soc. 1956: 2469~2474, 1956

- Bullock, E. & A. W. Johnson: Actinomycin V. The structure of actinomycin D. J. Chem. Soc. 1957: 3280~3285, 1957
- 5) BROCKMANN, H. & H. GRÖNE: Darstellung und Charakterisierung reiner Actinomycine. XII Mitteil. Über Actinomycin, Antibiotica aus Actinomyceten. XXIII Mitteil. Chem. Ber. 87: 1036~1051, 1954
- 6) WATANABE, Y.; K. WATANABE, F. KOIDE, T. SAITO & K. SHIMURA: A simple quick method for quantitative determination of amino acids by paper chromatography. (in Japanese) J. Agr. Chem. Soc. Jap. 34:620~ 624, 1960
- Kuhn, R. & G. Osswald: Neue Synthese von β-Pyrrolidonen; Darstellung von DLγ-Oxo-prolin DL-allo-Hydroxy-prolin und 4-Äthoxy-pyrrol-carbonsäure-(2). Chem. Ber. 89:1423~1442, 1956
- BROCKMANN, H. & H. MUXFELDT: Konstitution und Synthese des Actinomycin-Chromophors. Angew. Chem. 68: 69~70, 1956
- JOHNSON, A. W.; A. R. TODD & L. C. VINING: Actinomycin. II. Studies on the chromophoric grouping. J. Chem. Soc.: 2672~2679, 1952
- 10) BROCKMANN, H. & K. VOHWINKEL: Abbau der Actinomycine, I₁, C₂, C₃ and X₂ zu Despeptido-actinomycin, Actinomycine. XV Mitteil. Antibiotica aus Actinomyceten. XXXIV Mitteil. Chem. Ber. 89: 1373~1379, 1956